T AR I TN SN U UN LW U UV U UAURA R R N U W AW WA T TS 228 €20 P20 UaB Vel Vaba A¥a fVo @V4 3 '3 4 aad" 3

UNC FILE ¢op) 3

NPS-53-88-007 -

NAVAL POSTGRADUATE SGHOOL :

| Monterey, California

; % g
Y lg\xl‘RAD}?:;,f ' D--r-| C ?:
Ar [3se> ELECTE b

AD-A198 354

AUG 3 1 1388 :

d)

| &
: w

! H s

) d oot

A TUTORIAL ON APL2

P

by
Toke Jayachandran “

Technical Report for Period
September 1987 - July 1988

PR AL |

-
&

b Approved for public release; distribution unlimited

Prepared for: o
Naval Postgraduate School .
X Monterey, CA 93943 R

-

88 8 21 n3y §

‘-‘:‘t‘)t“:‘l‘u‘l'a‘i.'o't‘"t‘-‘A'.«‘l‘.‘l.a?l.p‘t';."n“.l,“n’l’di‘o.i'l"'b‘l",".o "q‘.,"l.‘ a!“v?!'a.ﬂ:'i’o'.t‘ul't,l?a i‘!.l’o‘,t‘n.ﬁ.l’)ﬁal‘t?"!?"h"oé"i."o.“oJ'O."t‘"l’“_u:“qf‘%:"i,.'if"tf"iJ‘.Ch‘&

NAVAL POSTGRADUATE SCHOOL
Department of Mathematics

R. C. AUSTIN HARRISON SHULL
Rear Admiral, U.S. Navy Provost

Reproduction of all or part of this report is authorized.

MM‘W

TOKE JXNYACHANDRAN
Professor of Mathematics

Reviewed by:

AL e Lt M N

HAROLD M. FREDRICKSEN KNEALE T. MAR L
Chairman Dean of Informatidn and
Department of Mathematics Policy Sciences

NEDCOOROOIROROKK XIDOOUETOCH

N A R A A T AL K A N R A A A AT OO Y TR Vel S (Wl Vol W el

Srua Nty v & Wl e T S VAGE

REPORT DOCUMENTATION PAGE

.1y REPORT SECURITY CLASSIHICATION 10 KESIRICTive MARRINGY

N UNCLASSIFIED ;
| 4a SECURITY CLASSIFIKATION AUTHORITY 4 ONBIKIBUTIUN/ AvaiLAdILITY OF HEPORT '

i
20 DELLASSIFILATION s DOWNGRADING SCHEDULE

Approved for public release; distribution
unlimited

3 PERFORMING URULANIZATION REPORT NUMBLK(Y)
LY
NPS-53-88-007

5 MONITORING OROGANIZATION REPORT NUMdE R(Y)
NPS-53-88-007 ’

na NAME Or PERIORMING ORGANIZATION

ob OFHICE SYMBOL
(1t apphicable)

53

jea NAME OF MONITORING ORGANIZATION

Naval Postgraduate School Naval Postgraduate School

L4

R | 6c ADORESS (Gity. State, and ZiP Code) /b ADDRESS (City, State. and Z2IP Code) :
) Monterey, CA 93943 Monterey, CA 93943 ¢
A

3a NANE OF FUNDING SPONSORING 80 OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER it
ORGANIZATION (If apphicable)
Naval Postgraduate School 53

. L
D [8 ADORESS (City. State, and 21P Code) 10 SOURCE OF FUNDING NUMBERS DX
% . Ly
K PROGRAM PROLECT TASK WORK UNIT i
4 Monterey, CA 93943 ELEMENT NO | NO NO. ACCESSION NO \
£ v
1] h

PV TiTLE (tnciuae Security Classitication)
l‘ ! J
‘E A Tutorial On APL2

s

‘ d
¢
= '
K 12 PERSONAL AUTHOR(S) _]
o Toke Jayachandran "
R §132 1vPe OF REPORT 13b TIME COVERED 14 DATE OF REPORT (vear. Month.Day) ['S PAGE COUNT X
3 §f Technical Report FrROM9/1/87 107/31/88Y) 1 August 1988 :

o

‘:‘6 SUPPLEMENTARY NOTATION

b

te 2,
=

' L7 COSATI CODES 18 SUBIECT TERMS (Continue on reverse f necessary and identify by block number) ;'
1 r FIELD GROuP SUB-GROUP programming language, APL, APL2, tutorial g
Y

) W
19 ABSTRACT (Continue on reverse 1f necessary and identify by dlock number) s

This report contains a short tutorial on the new features of the APL
language processor called APL2, available on the NPS mainframe computer.

LI R o

.

20 DSTRBUTION/AVAILABILITY OF ABSINKACT 21 ABSTRACT SECURITY CLASSIFICATION
Blunciassiricomnumiteo [saMe as ReT Doric users UNCLASSIFIED B
228 HAME OF KESPONSIBLE INDWIDUAL) 220 TELEPHONE (inciude Area Code) | 22¢ OFFICE SYMBOL :Q
Toke Jayachandran (408) 646-2600 53Jy "
00D FORM 1473, 8a mar 83 APR ecition may be used unti exhausted SECURITY CLASSIFICATION OF THIS PAGE A

All other editions are Obsolete.

.) . . . R Cak
EEEPIRSUYNIT. SRS T, T r I 7 D E RO RS TRUCHRRy g YRR IR RO, SURTIEPITITL S SN PU SN 'u:rmxm‘*?"w’i&nn\nﬁrﬂu“

Y D O 3y e D R o Do D S O e o D T e T T T T T T T T X I O NN \\,‘,\,“;“*.'.*.\,

AN gt B 0 0 Pa 0 0 9 D Y AR N N WU NN URN N UL ML L VL ULV AT STV 2% @ut B2t 5.6 pabd N AKX X LR

A TUTORIAL ON APL2

INTRODUCTION

7)APL2 is an advanced APL language processor which is
essentially a superset of the older VSAPL processor, both available
on the NPS mainframe computer. Practically all of the commands and
functions in VSAPL perform exactly the same way in APL2 and several
new features that enhance the programming and data processing
capabilities are included in APL2. Both VSAPL and APL2 will
continue to be available to the user. The aim of this report is to
provide a short tutorial on the new features in APL2; the reader is
assumed to be familiar with the APL language and the VSAPL
processor. \ Two IBM publications (references [1] and [2]) and the
recently published book "APL2 At a Glance" (reference (31) provide
a comprehensive discussion of the capabilities of the APLZ
processor. !

~—

A minimum of 1.5 megabytes of virtual memory is required in

order to use APL2. The CMS command: GETSTOR 1500K followed with an

ENTER will assign the requisite amount of memory. The APL2

processor may now be invoked with the command:

APL2

The response from the system might be as follows:
APL2 1.2.00 (ENGLISH)
PROGRAM PRODUCT NUMBER 5668-899

VERSION 1, RELEASE 2

CLEAR WS+

The + after WS indicates that a system message describing
some feature of the processor, may be displayed with the command:
JMORE. For specialized applications it is possible to add certain
keyword options to the invocation command e.g., APL2 OPTION1
OPTION2 . . . The available options and their definitions are
described in [1]. As with VSAPL, the GRAFSTAT package can be used
from within APL2; the appropriate invocation command for this

application is APL2GS instead of APL2.

Workspaces created under APL2 will have file type APLWSV2 as
compared to VSAPLWS for the older APL workspaces. These older
VSAPL workspaces cannot be loaded into APL2 with the)LOAD command
and the)LIB command will not even list them. However, it is
possible to convert them into APL2 workspaces by first "migrating"®
them into APL2 with the command:)MCOPY WSNAME and then saving them
with the)SAVE WSNAME command. The APL2 workspace name can be the
same as the VSAPL workspace; because of the differences in the file

types both workspaces will still exist on the A-disk. The APL2

o . £) . y -~ Wy 1 P 3 : i w\F ¢ A
£ 058 8, N T R T R 0 AR R G R RO R S R G ST R R

U T R AT 740 Y TR Py

R AR R R R R T I Y UV WU R R ey N VY N RN O R R A R AR AN AT W WU WY WU A T HEN ARV R AN A “'.‘.‘

L)

0

command: JOFF returns the user to the CMS environment; there is no !
1 ‘

command to directly log off from the APL2 environment. ky
bk

Complex arithmetic can be carried out in APL2. A complex s

"0

number of the form a+ib is entered as aJb or in its polar form as ﬁﬂ
mD® or mR® where m is the magnitude of the complex number and ¢ is dW'
\ 8
Gy

its angle measured in degrees or radians. If R is a complex E&
't

number, +R is its conjugate, IR is its magnitude and xR represents ﬁ&
£

a complex number with magnitude 1. The APL2 primitive functions :r
4

+,-,x and + perform the standard complex arithmetic in the usual !
3, qe

way. 2
»
" Je°.
1‘.,,- l:

W

ot

ARRAYS IN APL2 3
:'c‘,
g

.
o

A very useful capability available in APL2 is the ability to ﬁg

o

DeNS

create "mixed arrays" and "nested arrays". A mixed array is one A
a
that contains both numeric and character constants in the same ‘kh
oy
. e
array. A nested array can have other arrays as its basic elements; %&
hey

for example, a nested array could be a matrix each of whose 3 Kid
. Ny

elements is a vector or even another matrix. The following sﬂ
0‘|'.‘

examples illustrate the creation of mixed and nested arrays. ?E
B

EXAMPLES:

Xlel 2 3 4 X2¢(1 2)(3 4)

XN
Yle'ABCD' Y2¢'A' 'B' 'C’ 'D’ Y3«'AB' 'CD’)

T A AT e .;(.,_a“.,c‘.!.;g...t AON0

o e = 4

T T,

- Dy

- PR SR R e

FR T

- -

.

- .

M R

KA RN

xa NS RN NN L U N N N N N RN L UL ML WL T RUN LWL U W WL WG WU WU ORI M N A P PO R PO R W W S X ¥

Note that it requires separate commands to create the
arrays X1, X2, Y1, Y2 and Y3. X1 is a 4-element array
of numeric constants. X2 is a nested 2-element array
whose both elements are themselves 2-element arrays.

¥l and Y2, although defined differently, represent the
same array i.e., a 4-array of character scalars and Y3

is a nested 2-array with 2-arrays as its elements.

Z€(2 3)p(14) 'ABCD' '*xxx' (5 6 7 8J9) 'EFGH' 'AaaA’
We'ONE' 'TWO' ('BUCKLE'('MY' 'SHOE'))

Dé2 2 o'ONE’ 'TWO' 'BUCKLE' ('MY'’ 'SHOE')

Z is a mixed-nested array, a matrix whose three elements in
the first row are the arrays (1 2 3 4), (ABCD), (*%*x) and whose
three elements in the second row are (5 6 7 8J9), (EFGH), (aaaa).

W is a 3-element nested array in which the first two elements are
3-element arrays and the third element is itself a 2-element nested
array. When displayed on the screen these objects will appear as

follows:

Xleal 2 3 4 X261 2 3 4 Yle-2Y2¢-ABCD Y3e5AB CD

Ze>1 2 3 4 ABCD *ax%k

5 6 7 8J9 EFGH aaAaA

WesONE TWO BUCKLE MY SHOE

Ao g - v - ™ W - ey
TR T P S e TS YA

’ AT - AN R . ' wr o o J
R R A O O O O I A AN A TN IOBGBONC AN AOAMNO MO A OS AN L, o S S RO R NCRN

BT R T S R P T W TN WU I P WU R W W U U T U R W U MU R W WL W W WOR U WL WUV WU W 9avaka n¥a a0’ R T T T e WO

q
g

These arrays will be used repeatedly to demonstrate various ;:
concepts; the reader may find it convenient to create them in a Ei
Clear workspace and try out some of the new functions and z.
commands. $
o

0

Notice the number of spaces between the elements of W. There /]

is one space between ONE and TWO and also between MY and SHOE; :!
there are two spaces between BUCKLE and MY and three spaces between q;
TWC and BUCKLE. The spacing is designed to indicate the levels of)
nesting in the array; however, the only foolproof method for :t:;
determining the degree of nesting in an array is to use the new .::;
APL2 function DISPLAY described below. g7

Public Library 1 includes a workspace called DISPLAY that
contains an APL function, also called DISPLAY; this function will Kni
present a pictorial representation of the degree of nesting in a W
given array, on the screen. To use this function it must first be _%.
copied into the active workspace with the command: !,

JCOPY 1 DISPLAY DISPLAY or)COPY 1 DISPLAY

In APL2 it is possible to create several different arrays with W

i

a single command. Also, multiple usage of evaluated input (Aed 0O %
)

0) or character input (Befl 0 0) is allowed. 5?
»

};

(AA BB)¢10 will assign to both AA and BB the scalar 10. &'

¢

AN

. 2#
0

3

b

5 »

g _ . . 7 ".
S OO O O I IR N A IR O ST NI TN R BT MM MR TS I MO NCOE SRR WA RN A IR

AN TN IO AN RN

-

s g o

)

PR
T -

T |

o

g ey |

g Ry B

(AA BB)«(1 2 3)'XYZ' will assign (1 2 3) to AA and XYZ to BB.
It is not necessary to separate objects

enclosed in parentheses with spaces.

10+(AA BB)«1l00 will create AA and BB both containing 100 and
then display 110, the result of the addition
10+100.

(ABCDOOUO will display three successive O: for keyboard
input. The three inputs will be assigned to

C, B, A in that order; same for N also.

A number of new primitive functions and operators that are
especially designed to handle nested arrays are included in APL2.
Recall that a primitive function is one that is invoked by entering
a single APL character such as p or ¢. An APL '"operator" takes as
its overand an APL function, to produce a new user defined
function; for example, the primitive operator " / " (reduction)
when combined with the primitive function " + " results in the
summation function " +/ ", A new primitive operator called EACH
invoked with the APL character " " " (dieresis - Shift 1 on the APL
keyboard) is particularly useful for manipulating nested arrays.
When this operator is combined with a primitive function as its
left operand the result is a new function whose effect is to apply
the original primitive function individually to each of the
elements of its argument array. Thus, ¢~ when applied to an array

will display the shapes of each of the elements in the array

| _ - AN — - o]
c e ATy, .h‘_k‘.‘n’:’wl.\"a‘l’t o A e LN A A T, T e D Ve 0 T ey Yy ‘,h', Kt e VY, el s lah "‘-“Qn. Wttty

R R e A O Y IS T TR T R A N R S W WAy Y G AT N e O OO O OGO RN

el

P o o T - - -

LA TAPSRERCK]

"

e e o

[y oo

| - -

L . " .)
RO O O OA T U T NI O AN RO AN A S S NI TR PTG CA N S SOOI OQROCOOARODOIONONOOUDOLG ORI WL Yy

EETRICTASU AT TAR LR UM TOK RO P P TOK X PN A KR AN XN WO M Y v X UM G LWL Y VR UN UMW LWL X

separately.
+/C1 2)(3 4)(5 6)em9 12 +/7(1 2)(3 4)(5 6)e33 7 11
e 'X1e3EMPTY p X2€22 2 p 2«24 4 4 p 'Wea3 3 2

4 4 4

Notice that the third element of p" W is 2 since this element

is a nested 2-element array with components BUCKLE and MY SHOE.

DEPTH is a new primitive function invoked with the APL
character " = ", On the newer IBM 3179-G2 terminals the character
can be generated with a single key stroke; the rightmost key in the
keyboard row ASDFGHJKL:'"=, On older terminals such as the IBM
3278s it is an “overstruck" character; the system command:)PBS ON
described on page 24, must be used to generate the character.
DEPTH is a monadic function that displays the degree of nesting in
its argument array. The DEPTH of a simple scalar (numeric or
character) is 0 and the DEPTH of any non-nested array is 1
regardless of its dimension (a vector or a matrix or any higher
dimensional array). For nested arrays, the DEPTH is 1 plus the

depth of the item with maximum depth. Thus,

=Xlesl, =X2€92, =Ze92, =We34, =De33, ="Wesl 1 3

and =W e 000 000 1 2

Xy T X

The dyadic function PICK (APL character o, Shift X) will :

-
select the element specified in the left argument from an array 1:

p . .]

specified as its right argument. For example, Y

‘.l

o

25X1es2 20X2e93 4 2 2o5X2e¢4 J

oA

3oWe-»BUCKLE MY SHOE 3 25WesaMY SHOE 3 2 2 4oWeaE i

M t

For simple arrays, a single number as the left argument of by

PICK will suffice to identify the object to be picked. For nested ﬂ*

A

arrays, if the left argument is a single number the entire nested 5f

"

element at the specified location will be picked; if the left 7

i

(argument is an array all but the rightmost number identify the {
) "
location of a nested element from which an object is to be picked)

4 N-
and the rightmost number is the indicator of the location of the 5;

specific object to be picked. Thus, 3 2 2 4oW will pick the fourth o

ot

character 'E’ from the 2nd sub-element 'SHOE’' of the 2nd z

Y

sub-element 'MY SHOE'’, whi~h is in turn the 2nd sub-element of the ﬁ

.".
third element of W, 'BUCKLE MY SHOE'. !!

\!

t

K ¢
R

§

Picking objects from matrices and higher dimensional arrays :

is a little more involved and will be discussed after the L’

Nt

introduction of ENCLOSE a new APL2 function. "

'.

) ’:
P “
"»H

ENCLOSE is a monadic function (APL character <, Shift 2) that by

artificially converts any array into a single "scalar-like" object ?{

: whose shape would, of course, be empty. If X is any array, <X is a . 5‘
scalar object i.e., pcXesEMPTY, ‘w

3

"

(S

8 Y,

0

w

A
OO OB DSOS DT LRSI R R TRSTTT SR RIS HATWO ALK FubC N AR NCTRCRCIRCT X et KT Tt HICRIC ORI NI NN MACHN PCRAAC S

The ENCLOSE function is necessary for picking objects from a matrix

or a higher dimensional array. To PICK the entire element in a
specified row and specified column of a matrix (this object could
be an array) the location indicator must first be converted into a

scalar object using ENCLOSE.

(c2 2)>D &MY SHOE picks the (2,2) element of D which is a
nested array. However, to PICK the 2nd

sub-element SHOE the appropriate command is

(2 2)2>5D ¢-SHOE When picking sub-elements from an element at
a given location, the location indicator is
specified within parentheses but is not

not converted into a scalar using ENCLOSE.

Thus, to PICK an element from a matrix or a higher dimensional
array, the item to be picked must be preceded by its location
(row,column etc.) specified between parentheses and the element
indicator follows the location indicator; if the entire item at a
given location is to be picked the ENCLOSE function must be applied
to the location indicator. PICK can be very useful for replacing
or modifying elements in an array without the necessity for
redefining the entire object.

For the array Xlesl 2 3 4 X1(31e23 and
X1{3l¢c'THREE' will replace the number 3 with the
the scalar like object THREE., X1 is

now a mixed-nested array. However,

AL W . O M s W Cm R 'L »
BOGHSNOGOOCOON l.n“.a'l.-?l.a F AN A e L '-.I"c.!.o.l‘l.l l"‘l."h '0. v 0.&.. (M ‘ ."’ D;“'."&v‘,‘h"’.ﬁ.« 'O M), "c P U, N R B e 0 000, 0N, Y

P I

X

X 5

i ¢
R AR ,.t‘.

"!m‘v U TR R TR P PO RO TN S O R O R A W R N N N W W U U UNU Y U UN U O LN T o ¥ UYONUAIVEY)) ;
&

’

o

e
X1[3J¢'THREE' will result in an error since this command a4
calls for the replacement of a scalar object .

N
with an array. e

e

o

"
((2 2)25D)€’BELT' will replace SHOE with BELT in array D. 3!
Al
This command calls for the replacement “2
ot

of the 2nd sub-element in the 2nd row 4
and 2nd column of D with BELT. o

O.‘

"2

When using the ENCLOSE function one can also specify an ?
axis of a higher dimensional array along which the function 0
‘r.'

to be applied e.g., c[lIR or c[2]R. -E
13::

o
Let Ae€2 3p16 and B«(2 4p18) 9 (3 2p'ABCDEF'). Then, g!
3

gt

¢

Aesl 2 3 Besl 234 9 BB pBe=3 N
4 56 56 78 CD p 'Bea2 4 32 g

Y

EF i

%

clllA¢«»1 4 2 5 3 6 The ENCLOSE function is applied to !
'C.

the columns of A to create a 3-array Ei

\J

of scalar-like objects; note that %

pcll]JA=3 and p'cl[l]A is EMPTY. :

. W

‘0'4

&

c(2]Aes1 2 3 4 5 6 a 2-array with rows of A as elements. %’
£
 J

1t

c‘:

X

‘.QT

10 N

\)
. . . i
LAFLAA }5'4'A AU O..s.l'-.n’g.l'. 2’;1‘.,0 l“.',..l 'Y, .l’n. I'o.l'n l‘““;_ ‘6 " C'n l'q_l.n‘.l’. l'.‘l.o..l‘. lu'. I';'A';‘l‘g‘l‘- '..l’..l‘-.l.A."..l‘n.l‘».l.v.i'.‘A';‘o')";‘i'. c'.‘l'v () .A'.. Q’.‘\l‘n’?’n'-‘v‘

The new monadic function DISCOSE (APL character o, shift X on the
APL keyboard) has many uses. It can be used as an inverse of
ENCLOSE to negate its effect. 1If X is an array, >cX e9X i.e., the
combination of ENCLOSE followed by DISCLOSE will have no effect on
an array X. Another important use for DISCLOSE is in the creation
of tables. Suppose the 3-element mixed-nested array MENU is

defined by

MENU«('HAMBURGER' 2.00)('FRIES' 1.00)('COKE' 0.75)

Then, the command: oMENU will convert the array into a

table that will be displayed as below.

HAMBURGER 2.00
FRIES 1.00

COKE 0.75

The above example illustrates how the DISCLOSE function can
simplify the task of creating tables and charts. DISCLOSE can be
applied to an array R of any dimension; the only requirement is
that all the elements of R are either scalars or themselves arrays
of the same rank but not ncecssarily of the same shape. DISCLOSE
has no effect on simple (non-nested) arrays. For nested arrays its
effect is to create a new array which is atleast one dimension
higher than the original array R. The sizes of the newly created
dimensions are directly related to the sizes of the sub-arrays of

R. Let the nested 3-array B be defined by

11

. s N e . Y
RIS N A -o OSAAAAON I'-.l’c,l.o N U Seiih X, ’.,l'o.j‘n LR LAY, A %A C‘oi’nl’u’ ML A, ' XA AN "v“'f)0, !‘.’0'..0‘. MUK W MOLY i KA

A .] . .) . , 4
R O O OO O S OO NN BN RO LM MM OO M OCRSMOOO RO AN T MR M O, TR MO I KK o OO ORI N O TR NN

B¢(2 4p18) 9 (3 20'ABCDEF') . Then,

eBe~3 p Bes2 4 32

OB is a three dimensional array of shape
(3 3 4) whose 3 components along the

first dimension are

(oBY[1; sles1 2 3 4 (>BX[2; ;139 0 0 O (>B)[3; ;]e»A B
56 78 0000 cD
0000 0000 EF

The size of the first dimension, 3, is the number of elements
in B, the size of the second dimension is 3, the la-gest number of
rows in the elements of B, and the third dimension, 4, is
determined by the maximum number of columns in the elements of B.
Note that numerical objects are padded with zeros and character
objects are padded with spaces (p(2B)I[3; ;1¢23 4) to make them
conform to size requirements. The following examples illustrate
the use of DISCLOSE with axis specification. Consider the

nested-mixed matrix Z defined earlier.

p>Z¢»2 3 4 (5Z)[1; ;141 2 3 4 (02)[2: :1e35 6 7 839
ABCD EFG H

x k& * * A A A A

The shape of 2, (2 3), determines the first two dimensions

12

of 5Z and the size of the newly added dimension, 4, is the

shape of the largest sub-array of 2Z.

e>[112e»4 2 3 (5[112)[1;;1¢>]1 Ax (o[11Z2)[2;;]€52 Bx

. 5 Ea 6 Fa

The sub-columns of Z, consisting of the corrosponding

elements of its sub-arrays, determine >(11Z.

e>[21Z2¢2 4 3 (o[215)[1;;1es]1 Ax (50212)[2531e5 Ea

2 Bx 6 FaA
3 Cx 7 Ga

4 Dx 8J9 Ha

This time the rows of >Z consist of the corrosponding

elements of the row sub-arrays of Z.

The monadic function ENLIST (APL character €) will convert
any array into a simple scalar array (a vector of scalars) after
removing all the nesting. The effect of this function is different
from that of the RAVEL function " , " which stretches out any array

into a l-dimensional array with all nested objects left intact.

€Z¢>1 2 3 4 ABCD* * « x5 67 B8J9 EF GHAAAA

0, 2€26 e ,2¢24 4 4 4 4 4

pEZe>24

oy 2 i vate LN ay weB Fad oy ¥ek N2l vaEatafaved Tab vah Cah VRl Uad Vi3 ¥a wak el VAl cal af ad 2 8 8 628 20 408 af v i mal ad o ah vt *a ko el el Vait od ‘gl #ak tat ‘el gk v at oy

FIRST is a monadic function, invoked with " t " (same as TAKE) ﬂ?

that selects the first element of an array, in row major order. }N

(12)€'XXXX' will replace (1 2 3 4) in the first row, first N

column of Z with the character array XXXX. . N

The dyadic function MATCH (" = ", same as DEPTH) will yield a ﬂ{

1 if the left argument L matches the right argument R exactly, and
a 0 otherwise.

'ABCD':'A' 'B’ 'C' 'D' > 1 _,

'AB' 'CD'='ABCD' ¢+ 0 foy

'AB' 'CD'='AB CD' e» 0 since L is nested and R is not. i

''=10 «»0 since L is a character and R is numeric. .

The FIND function € is a dyadic function that yields a boolean Ea

array of the same shape as that of the right argument R with a 1 in !.

each position where the pattern defined in the left argument L I

begins to occur in R. i

'khkkk'€Z €0 0 1

000 A

14 o

BRSSO AOAI M DA A DN I AR OAHAN DEDADEIA O B SN S SO ONOS DN BN R SRR ‘:»"w‘*""d?'.ti’?

'XY'e!'XYXYXYXYXY’ 1 01 01 01010

This function is different from MEMBER, APL character €, which

produces a boolean array of the same shape as L with a 1 for every

component of L that occurs in R,

APL2 OPERATORS

The EACH operator " ™ " was discussed briefly earlier. This
operator can be combined with several primitive functions as well
as user defined functions to create new user defined functions such
as " +/” " which will sum each of the sub-arrays in a nested
numerical array, separately. The two operators " / " and " \ "
have new uses in APL2 as demonstrated in the examples below.

Consider

Xl e 1 2 3 4 X2 e 1 2 3 4 Y1l &3 ABCD

The next four examples illustrate how to EXPAND an array by

replicating each element the same or different number of times.

2/X1 € 11 2 2 3 3 4 4 replicates the elements of X1.
- 2 3/X2 12 12 34 34 34
0 2/X2 &> 3 4 3 4

1 2 3 4/Y1 ¢» ABBCCCDDDD

L

o
. . - . " TN : LM A
< 2 T B B 8Tt P B e T T R Tt s T e B S R T T e i e St o

WYY NN g R TR PO N U UV A A T A U R O O O O R R O T T I T R DY s OO Y vay vag int OV

The next group of examples show some of the different ways ﬁg

to REDUCE a given array. i (K

2+/X1 &> 3 5 7 the sums of successive pairs.

2-/X1 e "1 "1 "1 the differnces of successive pairs. 0wy
¢

“2-/%X1 €3 —(2-/X1)es1 1 1 0

3x/X1 &> 6 24 the products of successive triples. g§

Examples of the use of the primitive function " , " with

the operator " / ", s

, /X1 €3 /X2 €3 cX1 all scalar objects. b
4,/X1 &> 2,/X2 &> (,cX1) an array of shape 1. i
1,7/X1 e» X1 1,/X2 &9 X2 j!
2,/X1 e 1 2 2 3 3 4 a mixed array of succesive pairs. "L

4,/X1 €+ 2,/X2 and p2,/X2 = p4,/X1 = 1 e
Examples of reduction of higher dimensional arrays: oy

o/Z €3 1 2 3 4 ABCD*%hk* 5 6 7 8J9 EFGHAaAAA 0g
0,/2 &3 2 and p",/2 € 12 12 o
,/[11Z > 1 2 3 4 5 6 7 8J9 ABCDEFGH #*%+AaAa 0%
0,/0[112 &> 3 and e°,/01312Z «> 8 8 8 R
, /1212 &+ ,/Z since the outermost axis reduction d

is the default. . W

16 REN

Al
T e ’ IR % o Y : " A
G A S R ARG WAIAOOGS OO0 OB O OO ONCIAG LA OGO DO OO OOGIU IR]COHNIOOONOICOIA R

Examples of the different ways of using the SCAN operator:

LA\X1 €1 1 2 123 12 34
e, \X1 &2 4 and P, \X1 > 1 2 3 4
L\X2 €1 2 12 3 4

e, \X2 € 2 and e \X2 e 2 4

In additon to the primitive operators, one can create user
defined operators with unspecified operands, which result in
generic user defined functions. 1In a particular application,
specific primitive functions are used as operands in the invocation
command. The user defined generic operator AND (selected from the
EXAMPLES workspace in Public Library 1) is one which will perform
two unspecified functions in parallel, e.g., the sum and product of
two numbers. The operator can be created using any of the editors
available in APL2 (discussed later on in this report). This
example also illustrates the creation of an operator (or a
function) that can be used either monadically or diadically; a new
APL2 system variable ONC (discussed later on in this tutorial) is

very useful for this purpose.

{01 Z¢L (LF AND RF) R

[1] »(0=0ONC 'L')/V1

{21 a APPLY TWO FUNCTIONS TO PRODUCE A PAIR OF RESULTS
[3) A EXAMPLE: 4 +ANDx 5

{41 a DYADIC USAGE

17

. s YRR T N i -I &
ol L A R S L e G AR g e gt T T T AR e M T T Y L R G G g

T O N VAR YO RO TOR TOR FOC U A T ST WU 0% MU HLRW A R WU R WO OO R RN RO UNACO A W W M WWOY VY DTV N ZY TNV Y oY

[5] Ze(cL LF R),cL RF R X
[61 -0 o,
{71 A MONADIC USE

8] V1:2¢(cLF R),cRF R oy

The operands LF and RF in the above definition can be any .
two APL2 functions; specific choices for these functions)

are made at the time of applicati.n of the operator.
EXAMPLES OF THE USE OF THE OPERATOR 'AND’ ‘;c;

4 +ANDx 5 ¢+ 8 20 (dyadic use of the operator)

-AND+ 5 e» 75 0.2 (monadic use of the operator) Wiy

In the first example, the primitive functions " + " and " x " oy

have been selected for LF and RF respectively. In the second Y
example, the negation function " - " and the reciprocal function "
+ " are the left and right operands of the operator AND. Also in Ka
the second example, the operator is used monadically i.e., only a

right argument is used with the operator. The first example

illustrates the dyadic use of the same operator. N

18 s

’ . . 3 4 - ; W . A l‘|.
DN RERCIRN .-,*“L‘su:‘,l"'i."n.,l at“a.""i?“l i‘g,ﬁ‘s’, 0‘:,l‘o.l‘v?";,l'u'o.l‘q.d'n RS XARAMAN !“-"i'.y..'..l.’\.i‘r u.l't_t'.I‘u,l‘e&'o!l'g..\‘-,t‘e l'.‘t’-.l‘- A, '-'6‘}‘

RN

(R RN RN TN NL N RN VR AN VW UN U A USCL W 0% U L Lo U L D D UG DA AT TR TR, ST OO I R R T Feta e

SYSTEM VARIABLES AND SYSTEM FUNCTIONS

A number of new system variables and functions are included in
APL2. A few of these that are important for standard applications

are discussed below.

OobL R (Delay function)

R is a numeric scalar. This function will cause
a delay of R seconds between the execution of two

successive APL expressions or commands.

L OEA R (Execute Alternate)

L and R are character arrays containing valid APL
expressions e.g., ’'Ao.xB’ or 'DESCRIBE’' etc. The
effect of this function is to execute the APL expression
R. If the execution is completed without interruption
the result is displayed. Otherwise, the alteinative
expression in L will be executed. For example,

"13' OEA 'i14’ will result in the display of the

array (1 2 3 4) and 13’ OEA '14.5' will result

in the evaluation of 13 since 14.5 is undefined.

OL and DR (Left and Right Arguments)

Whenever a primitive dyadic function is suspended

(5
URES
R
5 ;i**;
g _

e
Q?\t ”L

“

@ﬁg

R T T S O S T T T S L WU MU WU MU S U WU W A WU UG WU 200 T AR WL T RS W W ¥ N N T T I T N R

either in the immediate execution mode or within a ﬁ

?
defined function, the left argument of the dyadic t
function is temporarily stored in OL and the right !1

argument is stored in OR; for a monadic function
only OR will be created. One or both of these . o',
system variables can now be assigned new values

that will make the function executable, In the N

immediate execution mode (calculator mode) the v

command: 20 will then complete the execution of

the corrected expression. The analogous command é
for a suspended function is: 9N, where N is the ‘{

X
line number where the function is pendant, to 1!
complete the execution of the function. The %
APL expression 2 3+4 5 6 will result in a %
LENGTH ERROR since the two argument arrays are ?!
of different shapes. 0OL will now contain the é
left argument array (2 3) and OR holds the ﬁ
right argument array (4 5 6). The expression ?
can now be made executable either by assigning gi;:
to OL a 3-array or by assigning to OR a 2-array %
or by assigning to OL and OR any two arrays of 1.

of the same length or shape. Thus, for example,

OL¢l 2 3 followed by the command: 0 will .$
nig

display the array (5 7 9) the result of adding ?
i

N

the arrays (1 2 3) and (4 5 6). e

20

W
3

‘ . . PR '
OGN0 OO GGG A OIS OO IINAS MU AT T KN T

P L R R T R A P R 2 LT R TN W T PO N TR S R S YW 70 W N W T CE RN KA LN RN R R AR R — A% OW WUV IS

34Ky

3
2,
"] "

DNC R (Name Class) .
3,
)
R is a character array (scalar, vector or matrix) :'
i'g
containing the names of APL objects. This function 3&
‘."

will check each of the names in R to see if it is ﬁ
already in use in the workspace; a 1, 2, 3 or a 4 -
will be displayed if the name represents a label, o
! 3

variable, function or an operator, respectively. .
)

]

If a name is not in use but conforms to APL naming

conventions a 0 is returned and a ~1 implies that !
the name is invalid. ONC was used in the definition 'ﬁ
of the operator AND discussed earlier. i
4

L ONL R (Name List) ?:;
N

The left argument L is optional and may be omitted. Q
The array R can be any subset of the array (1 2 3 4). :%
The names of APL objects specified in R (labels if ’
R=1, variables if R=2, functions if R=3 and operators ii
if R=4) are displayed. If L is included in the command, 32
only those names that begin with the alphabets included g!
in L, will be listed. 'AB’ ONL 2 3 will display the E’:;
names of all variables and functions that begin with é:
the letters A or B. Eﬂ
;

.

o

N,

o

i

o §

. " " : .) ; ¢ .] 0)
e Tt g T R T A L LT e B R O L R b WS et e T e T N Pt

RS A ‘b3 57e $VE 040 8 MUN VR U ALY VR LN LWL U LW M LW L LW U U URLAS RV RN folind s i 04 KX W N RN W VW C TR WOV I vy
v . 3 R v

Sy T

*4

’.

NEW SYSTEM COMMANDS i:

o

o

JOUT FILENAME NAMELIST %
This function creates on the A-disk a "transfer %
file", with the specified file name and file type =
APLTF, that contains the APL objects specified :E
in the namelist, which is optional. If the *’
"

namelist is omitted all user defined objects :
and certain system variables are transferred. 'g
This command can be very useful in situations %
where the workspace is nearly full and more =
room is needed. Some of the objects that '§
are not immediately needed can then transferred é
and the objects erased to generate more room. ;
o

JIN FILENAME NAMELIST
This command will result in the creation, in the
active workspace, of the objects in the namelist

from the transfer file created with the)OUT

command. The namelist can be a subset of the L
|.'

one used with the)OUT command and if it is %
Q:

omitted the entire transfer file will be copied 5
t

into the workspace. 4
%

1)

Y

INMS ‘3
- ”

The names of all user defined variables, functions ‘
W

X

l"i

I(

22 - .

. " . - ‘ [}
RO 0O OO DO A OO OO OGOC OO G OGOG IGO0 PO OCUROUOUIR ‘Q‘-‘l\.‘u"’l'-‘l."l’; W R R I T

« -

and operators will be listed. Each of the names

ends with a period followed by a 2, 3 or a 4 to
indicate if it is a variable, function or operator
name. Optionally, the beginning and ending
alphabet sequence for the names to be listed, may be
included in the command; JNMS BE EXA will list
only those names that begin with the sequence

BE through =XA.

Sometimes it is convenient to assign a group name
to those objects that share a common traict. All
that it takes to create a group is to define a
character matrix with the names of the objects

to be included in the group as rows e.qg.,
GROUPle>'VARL' '0OP2' 'FN5' which creates a group
with three objects. The name of the group

itself may be included as one of the names in the
matrix; this would be useful when erasing the group
or when copying the group into another workspace.
To apply an APL command to an entire group, the
group name must be specified within parentheses.
If the command applies only to a subset, the

group name without parentheses followed by the
list of objects, must be specified. For

example, the command:)ERASE (GROUP1) will

erase the three objects VAR1l, 0OP2 and FNS5.
However,)ERASE GROUP1l OP2 will only erase

the one object OP2 and GROUP1l will now have

23

‘!'.‘!'4\'4 W%y '. I'c.l.b‘ “D 1 l‘c‘."“i ' > b'. ‘i‘t ,.l‘. , PO N Q'»‘t AN LRI AR R by l...l' .‘.‘.‘6’. .' ‘.'..,.Q‘.. [_‘\l..ll. FORX 2 WU X X g ¥

N Y AR WL,

AT "
M0 N I SR RO

ERRR A AN AN AN A SNV VYR A VRN XY U4 ¥4 N A A NANWEY '\'I‘t‘-:’l-‘ (G.2"0 1 0,8' 0.0 V. ¥,.8 Y ROARE N U ‘Poui i g%, Y ¥ ‘2 gt il b

just two objects. Also, the)NMS command will jﬂ

bad
list the group name as one of the variable)

names. ’

':r

#

o

(ol
JOPS 2

Lists the names of all user defined operators. -

X

b Here again, starting and ending alphabet ﬁ
~l

sequences may be specified. iy

)

0":

.\,

JQUOTA :

‘]
: A six element array whose components are h
the total amount of virtual memory, virtual b

3

memory still unused, the workspace size, x

workspace still available, size of the memory ?

. reserved for shared storage and the maximum K
& ()
number of shared variables that may be defined, %

'. 2
! is displayed. Y
: N
b X}
i JPBS ON o
: G
\ PBS stands for printable backspace. This command :

is necessary to generate "overstruck" characters

X such as B, 4, ®, = on terminals that do not have N
h

separate individual keys for such characters. iy

4

i

After the command has been issued, an overstruck
character is generated by typing in sequence the
two component characters (e.g., 0 and +) with the

underbar character " _ " (shift F) between them.

24 os

PR

: “ AR =, r W W W W I W e e W Wi WX P
LX) '.P“d ,al..‘l"r_‘l':l‘-.l.a l'-'l'-!"c 4%3.1% n‘.‘..l‘u.l » I.LI.-'U‘O .';, -.l! A .'. N " N II. o] ‘.0. A S l.‘!ﬁ 8 .lo‘! AN ™ o h... Mo Ad !.l !';‘.'I N ‘ I‘o‘l o KM N ..l'!l

T S T T R sy oe 8% a0y g Qe ta AL AT T ak et da) Uat tap gy O OO KR

Thus, the sequence " aA_ _ " is equivalent to the &v
overstruck character " 4 " , " = _ _ " is the A
APL character for the DEPTH function and " 0O_+ ~Y

is the same as the character B8. ’%ﬁ

A
JRESET N {&.
Clears the first N lines from the State Indicator. \
If N is omitted the entire State Indicator is

‘.
cleared. et

YHOST CMS-COMMAND .4
The specified CMS command will be executed and CArs
control is returned to the APL2 environment. If e
a CMS command is not specified, the name of the —
host operating system (CMS at NPS) will be g&
displayed. The command)HOST SUBSET will et
temporarily create a CMS sub-environment within %
APL2; return to APLZ2 is achieved with the (18

command: EXIT. Sy

JMSGN USERID MESSAGE e

The message is sent to the user with the specified QQ:

userid.

25 ..u"iaf

e d
) ,) , . R A R
. - . - » \ e Q
B OO OB GO N0 00D 0 KOO O O N NS NI M AT TCM G K P o T RO IO e R SR

BV RETCRA R RYTA” ORI AU WO X RN RS LA B R KU R AT U Waf wal woh Ua R b wad vall tolh ¥of ¢of any N v at aut NSRS N RARSTAL AN

APLZ EDITORS

Three different editors viz., a line editor , a full screen

editor and the editor associated with the computer operating system

-

(XEDIT at NPS) are available for use in APL2. The respective

e s B N o

Fos'

commands for selecting these editors are

2 JEDITOR 1 for the Line Editor.

§2 JEDITOR 2 for the Full Screen Editor.

! JEDITOR XEDIT for XEDIT.

R

i There will not be any system response when one of these

a commands is issued unless an error is detected. The line editor is
p essentially the same as the one in VSAPL and will not be discussed
g in this report. The system editor XEDIT is one of the choices for
i

; a full screen editor and it can be used to create or modify APL

g functions, character variables and character matrices. Only

§ currently existing APL character variables and matrices can be

u adited with XEDIT. In order to create a new such object, the first
ﬁ step is to define a dummy variable or matrix with a specified name
; in the workspace (for example: VARNAME«'' will create an empty

g character variable); it can then be modified using the editor. The
h editing process is initiated with the command: VVARNAME or VFNNAME
% or VZeL FNNAME R etc. If APL characters are included in the object
%‘ being edited, issue the command: SET APL ON in XEDIT to insure that
E‘ they are properly displayed. All of the XEDIT commands will now be .

available to the user. To add new lines at the end of an existing

object the INPUT command (I) may be used. However, it is very
N 26

9,
D

RO OSOALA DRI UMM ORI ';_\.‘.'é.‘.ﬂ,‘.t. RGO ‘n"-°'-h'0.'u""d.' OISR DU AN TRNA U AN AR K N RN ROUCUCE

WYX XXX

o e

P S R L o = -

- i

-

e,

4

BGRGR O A C O O O S O A I H - S GA S L NN 20 Uo % SN SRR

important that the BOTTOM command (BOT) is issued prior to the

INPUT command. Otherwise all new lines will be written above the
"HEADER LINE" and it will not be possible to save the object or
even to abandon the editing process; turning the power off may be

the only way out.

The APL2 full screen editor is quite different from the VSAPL
editor. The new editor does not provide a command line at the
bottom of the screen to enter editing commands. All commands are
entered by typing certain APL characters between the square
brackets of any displayed line of the object being edited. When
the Enter key is pressed, the command is executed and the original
line will be restored. The following are some of the full screen
editor commands; unless stated otherwise these commands may be

entered on any displayed line.

e e Ol

)

4,

[»>1] Abandon the edit session. ﬁ
(4

(vl Save the object; remain in editor (PF6). -
+

.‘:

v This command is entered at the end of any)
5y

displayed line or on a new line to save

the object and exit from the editor (PF3).

(anl-n2] Delete lines nl through n2 inclusive.
Canl,n2,..] Delete the specified lines nl, n2 etc.
[A-n] Delete lines 1 through n.

{an-] Delete lines n through the last line.
(Al Delete all lines except the header.
(L] Renumber the lines (PF2).

27

L 3
X
™

f

‘l

PP MU AP WL W WU WA WL W

{v name nl-n2]

[A name nl-n21}

(r1]

(t1
(]
{21

[3]lexpression

hy" l"‘..' (K R RNANRMEL R WK S % 8% 4% RUY LN VY N AN A AR AT O N AN AT AN

Save (PUT) lines nl through n2 under

the specified name for later reuse.

The name is optional unless multiple

PUTs are planned. A different name must
be used with each PUT command; otherwise,
the file will contain only the obijects
from the most recent PUT command.

Retrieve (GET) specified lines saved

with the PUT command,

This command (blank line number) on any
line implies that the text on the line

is a continuation of the preceding line.
Scroll forward one screen starting

with the cursor line (PF9).

Scroll back to the preceding screen (PF7).
Scroll forward to the next screen (PF8),
Display the PF key settings.

This command will result in a temporary
exit from the editor to execute the APL
expression; the expression will not be a

part of the object being edited.

New lines may be added at the end of an existing object in one

of three ways: (1) type on a blank line after the last displayed

line or (2) type

number bracket (

over the header line starting from the left line

{) or (3) type over any existing line after

replacing its line number with that of the new line. In the latter

28

two cases, when the Enter key is pressed the new line will be

created at the end and the original lines will be restored intact.

Any existing line may be modified by typing over the existing
text or by typing the desired line number followed by the modified
text on a blank line at the end. An existing line may be
duplicated as a new line by replacing its line number with the
desired new line number; on pressing the Enter key the old line

will be restored and the new line is created.

A new line of text may be created between lines n and n+l by

typing the new text on line n+l starting from the left bracket ([
) of the line number. Pressing the Enter key will create the new
line with a fractional line number e.g., [3.1] and the (n+l)st line
will be restored. If desired, pressing PF2 key will renumber the
lines immediately; otherwise, the renumbering will be done

automatically at the end of the edit session.

More than one object can be edited simultaneouly with the APL2
full screen editor. While editing OBJECT1 say, the command:
VOBJECT2 on any displayed line of OBJECT1 (no text to the left or
right of the command) will display the second object for editing
starting from the line at which the command was issued. The lines
of the first object that have been overwritten may still be
displayed using scrolling. If desired a third object may be
brought in by following the same procedure, etc. When done with

editing an object, the object may be closed with the command: V at

A e anw

P e N
Lo S 2N S o T Y

v e -

s -
W e

i n e e e -

e T

g

TS

't
)

-

< -
A IR

LiTa¥r v et TR R BN D g Ul VU p g D HaB R $a %0 Sa® g 0cd cat cat At auiagy Sakadin/atata 0la"eVa Ria'dia A% ' 8% A's 4%2 820" 0’0, 0 s 8*

the end of any displayed line of the object and the immediately

preceding object will become the current object for editing.

AUXILIARY PROCESSORS

Several auxiliary processors (APs) that allow the interfacing
of non-APL programs with APL programs are available to the APL2
users. These APs have many uses such as reading and writing to CMS
files, accessing peripherals and running non-APL programs such as
Fortran programs from an APL environment. Most of these processors
are automatically attached when the APL2 command is issued. One of
these APs, AP 121 (APL2 Data File Processor) will be discussed here
in detail; two others viz., AP 100 (Host System Command Processor)
and AP 101 (Alternate Input Processor) will be briefly mentioned.
The Host System Command Processor (AP 100) allows the use of CP or
CMS commands; the APL command:)JHOST CMS-COMMAND will execute the
CMS-COMMAND and returns the user to the APL environment. The
command:)HOST SUBSET creates CMS as a sub-environment of APL.
Entering the command: RETURN will reactivate the APL environment.
The Alternate Input Processor (AP 101) can be used to run non-APL
programs such as Fortran programs and use its output as input to an
APL function. This processor can also be used to run an APL
program from the CMS environment. Details on the use of these

processors are in reference [2].

30

2

DR R LTG0 20 T R e SN R R R S S S S R R R R L T T

-

"

)

LS ~‘~

o

- r—
-

- o B

LG S

s e W A Sy

> P ol LK

K=

o™l -

-
(S

" o

e

-

2

oo

« Rt
-

o

e X

TN

-

Y
!
N

2 a6’

Regibi, A g 8te Bt %2 1T % $¥. gVa gty MR AE Al Tl Aty At Vatatat cat AR aal Ve U Sal o8 Sl Gl a0t a0 0 i 8.8 0 B" . > - a¥in- av-atioavh ot stk oA ut 4

The APLZ2 Data File Processor (AP 121) allows the creation, on
the A-disk, of an APL file (file type VSAPLFL) containing
temporarily unneeded APL objects such as data sets, variables and
functions; these objects can be retrieved from the file when
needed. This capability is very useful in situations where several
different large data sets need to be processed and the active
workspace does not have enough room. Also, because of the
structure of an APL file it requires much less disk space to save
an APL file than an APL workspace that contains the same objects.
Two types of files, sequential or direct access, may be created
using this processor. Objects written to these files, called
records, are assigned consecutive numbers starting from 1 for
purposes of identification. Records from a direct file can be
retrieved in any order and sequential file records can only be read
on a first in first out basis; the 10th record in a sequential file
can only be accessed after the preceding 9 records are read. There
are no size limitations on records written to a sequential file but
when creating a direct file the size of the largest record (maximum
allowed is 4054 bytes) that will be written, must be specified.

The actual process of creating files and retrieving records is
achieved using "shared variables" and system functions/variables
such as 0OSVO, and OSVC. Two shared variables, a "control variable"
whose name must start with CTL and a "data variable" with a name
that must start with DAT are needed to interact with the AP 121
processor, and a prescribed dialogue must be carried out to
successfully create a file and to add or retrieve records. The

following example illustrates the sequence of commands needed to

31

S g ~ ~ A R ¢ > 5 n L ¢t s 1] AR 0 b
. PV A T T T T T T DEINDODRON 0“)‘.))."5.‘-)“ DDA DS “,f,. Ky |‘,';.._|“,'.".Q"In‘, '.V,'ﬂ ‘J (X% M) 3., le,‘li'-l..nl‘g A‘, ':.L's‘.*g‘ LK

create a direct file called TESTFILE and to add certain ficticious

records to it.
121 QsSvo™ 'CTL1'’ 'DAT1’

22

CTLle¢’'C TESTFILE D'

CTL1

CTLl1«¢'SWC TESTFILE 100°

CTL1
0

CTL1¢VAR1

CTL1
0

CTL1¢FN1

Offer to share the two variables.

This is the system response to indicate
acceptance of the proposed variables. A
return of a 0 indicates that the sharing
was unsuccessful; a 1 indicates that the
offer is pending.

Request the creation of a direct file
named TESTFILE; CTLle¢'C TESTFILE S' will
create a sequential file.

Check for successful creation of the file.
OK. Any number other than 0 indicates
failure; see reference [2] for the
meanings of other responses.

Open the file for sequential writing

of records. Records are written
sequentially in both types of files.

The number 100 indicates the size of

of the largest record.

Check for successful execution.

OK.

Write the APL variable VAR1

as the first record.

Check

OK -

Write the function FN1

CTL1
0

CTLl¢'JIM SMITH'

CTL1
0

CTL1eZ

CTLl

0

CTLle'’

CTL1

0

CTLle¢'DR TESTFILE'
CTL1

0

CTL1«0,3

CTL1

0

NAME«DAT1

CTL1e0,1
CTL1

0

R T e .2 D F v - & v
s ';’.’»‘.":,‘,'s*.‘«‘tl;"‘-.‘z‘ﬁ)‘AQ‘}A'.‘A\ l‘.’\'-‘l‘a’t‘»‘.ﬁ‘.!"»,‘t’}!.r."

as the second record.

Check

OK

Write the third record,
JIM SMITH,

Check

OK

Write the fourth record,
the nested variable Z.
Check.

OK

Close the file.

Check.

OK

Open the file for direct reading.

Check.

OK

Read the third record and store it in DAT1,
the shared variable created earlier,

Check. This check is optional but is a

good idea.

OK

Creates the character variable NAME
which contains JIM SMITH.

Read the first record into DAT1,

Check.

OK

33

. . NN, A"
d y 14
O B O s b R R T T TN B SR SO BN X2

R0 2 872 452 %2 A2 A% ‘&%, A2 TR URTURTUASS RPURIUAT B0 Ra AL S e, VR KO X N L WY LAY QMo g p VAL QYA gV gt i QUL ot S g B a R gl ar g B e VR g Wl W)

ZZ¢DAT1 22 is assigned the contents of Varl. J
CTLle'! Done with reading from the file. ot
CTL1 Check.] o
0 OK
The commands for reading from sequential files are as follows.
CTLle¢'SR TESTFILE' Open the file for sequential reading. e,
CTL1 Check.
0 OK N
VarleCTL1 varl is recreated in the workspace. “a
FN1«CTL1 The function FN1 is created in the 0
workspace. !
Z222¢CTL1 The character wvariable ZZ2 containing -
JIM SMITH is created. 0|
CTLle'! Finished reading. :h
CTL1 Check. '

0 OK 3

PUBLIC LIBRARIES e,

Two public libraries supplied with APL2 (LIB 1 and LIB 2) contain ‘ﬁ
the follwing workspaces: N
LIB 1 - DISPLAY, EXAMPLES, MATHFNS, MEDIT, . a
UTILITY, WSINFO)

LIB 2 - APLDATA, CMS, CMSIVP, FS5C126, FSM,

34 KH

Ht
;] :] Wt
e T e . p 3 CR f . '
OIS OB DRI ENINN .e.‘aI")A‘f‘n"‘h‘fhih'i:."-'(.l"’A'.‘%.’al...‘n.f.;"'l".i' "4‘..'»".'“.“"&'&' 'A‘.'u"‘-‘!’s\- l'-‘n'."n“.s'-‘a’»'t‘-'s‘,'l'}t‘ SO OCOOOIONNE

FRJVLTDUT XA XN

o FLm

PO Y R

R R L R AR R RO RO OO R T W 8 AR g o Vol Teh 08 0aR 42198 ok iut tal Sl Gl Gl - 0n 8- a1 Sudt Ul Sed® Al 0"

GDMX, GRAPHPAK, PRINTWS, SQL, TRANSFER,

VAPLFILE, VSAMDATA

Each of these workspaces contains ABSTRACT, DESCRIBE, and HOW
variables that provide information about the workspace. Also, the
workspace WSINFO in LIB 1 has brief descriptions on all the
workspaces in both libraries. The more important workspaces are
EXAMPLES, MATHFNS, UTILITY, APLDATA, CMS and PRINTWS., The EXAMPLES
workspace contains examples on creating user defined operators and
functions. MATHFNS has functions to perform certain mathematical
computations such as finding eigenvalues, finding roots of
polynomials etc. UTILITY is similar to EXAMPLES and contains
various functions to perform frequently used operations. APLDATA
is made of functions to create and read from APL files, that
automatically carry out the necessary dialogue described in the
previous section. The CMS workspace includes functions for
interacting with the CMS operating system and to run non-APL
programs. PRINTWS may be used to print entire APL workspaces or
specified APL functions and variables on the computing cente.'s

laser printer.

FINAL COMMENTS
A new release of APL2 (release 3), currently under test, has
several new features such as the ability to create and edit numeric

as well as nested arrays, no size restrictions on direct files, and

35

LA AN A il D Ay«

v BABAOAL DADAOAS ' 0 h ; 0 . 1 Larut
OO0 HOSCEAR ”-‘.‘»‘:‘&'T'l‘m R OO ‘l"’n‘:‘\h.ﬂ RN .bn".’;'ﬁn‘.‘..ﬂ“‘-l..x‘ '.«Q"J .J“ﬁ"‘ R “;"*J"s."ﬂ.‘a ‘.L\,‘n".ﬂ‘ W28 ‘."‘-!“J ..“'-\ .l"ﬂ‘J'Lﬁ [X "t'l‘»'a‘bl A

B

e % Y

IOy K

-r

- -
o e o 0 B

%" Y

o At RS N RN R TR SR T L PV L N T TV N AT LN AN W R R R UV UM LUy S U YNV, B0l e R Pt Fa® 2%

»
-
)/ L
' new nested array handling capabilities. This version can be]
h o
: $
! invoked with the command APL2T instead of APL2; this release ‘
. requires a minimum of 2 megabytes of virtual memory. It is "
¥ - {
) . t
! expected that release 3 will replace release 2, after the new o
¢
. M
) mainframe computer is acquired and installed. - :‘.
i
3
¢ s
' £
». LY
'
; ;
) q
h 2
) v
) ;:;
)
3 i
0 ¥
. "
" ~
d 3
t
\ o
. ;
i ;
4
! .
¥, R
X ¢
s o3
£ ‘
. ,)
X b
i X
k !
\J
; y
(o
) B,
h l
. W)
’ L,
. v "
' %
[} ‘&
X, o
- »"
: :
.l
[
\ 36 :.
.(
DX

"t

I Y

vl N v‘,‘ﬁ.\a":’v‘:-‘?‘;‘ ‘»,‘ .’!’ .Jﬂ‘l’.“ I'.‘Q.q ."'! ‘:"" 1, ..I’C.'Ql.;.d ‘.1‘0“‘0!"..“'., ..‘!I. ":"l."h“,h N] !.n !'l !h..h !.‘.h ‘-'h’-'l !.Q ..l’!ln".u‘.\l \ l‘!‘l‘~.".'l -ty ?'.l.!‘i

R O O PO SN IO RO XK gt 24 0 0N g ate ey “atealia®, vag Ty 2 OB A SR Lk aat ha Y. s e’ vy TR

s

L AR

=q
7

REFERENCES

::‘: A .{
SRy

{11 "APL2 Programming: Language Reference'",

v IBM Order No.SH20-9227-1, Program No.5668-899,

Release 2.

I K KNy

L o S S P T
Y ?,A. {'5 P

[2] "APL2 Programming: System Services Reference", N
IBM Order No.SH20-9218-1, Program No.5668-899,

Release 2. A

fe
{31 "APL2 At a Glance" by J.A. Brown, S. Pakin and e

R.P. Polivka, Prentice Hall, New Jersey, 1988. 8!

Y
@
"

W
e

*.-

°%

h st}
. {'4‘
A o

P
.

b
e T S

S:'

[32wl S N
--"-
(222

37)':'l':'

"ﬁ
> X ¢ WY Ve SOYOLY W% WK v T e Vet
ACOCGOS000000COQ0NOROGE NS TN ISR N TUOSRIAL JSNEHIRN SO 5 TRAROAN N L~ MO I, ,o'l.h'h'l:“.s',‘

ATER AT KRV RPUK

PR

‘.
’
8
]

8

"t
’

D)
Y
A0 LORCLOON

e

DISTRIBUTION LIST

DIRECTOR (2)

DEFENSE TECH. INFORMATION
CENTER, CAMERON STATION

ALEXANDRIA, VA 22314

DIRECTOR OF RESEARCH ADM.
CODE 012

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

LIBRARY (2)

CODE 0142

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

4 y 4 N J W "y ¥ '
l',-. » ", l'h'l’-‘l’- l!ai'u'('. A’!‘A’e.l'.'!"v.l.»‘n'!.l'!‘t.!.a".:'.‘ﬂ"a‘ .D‘ x) 'J‘“."’ ”"p.,‘ln’. M NN N -“ 'a! “J .'l“.‘ "‘ ‘,"‘n‘ ."‘q‘“-‘ X3 M) |‘0'l.~ h' L) s'D‘J‘.. " B

DEPT. OF MATHEMATICS

CODE 53

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

PROF. TOKE JAYACHANDRAN (25)
CODE 53JY

DEPARTMENT OF MATHEMATICS
MONTEREY, CA 93943

CENTER FOR NAVAL ANALYSES
4401 Ford Ave.
Alexandria, VA 22302-0268

